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Bioinspired technology breakthroughs of insect inspired navigation are enabling small 
aircraft that will allow exploration of Mars. The bioinspired technologies under development 
consist of a bioinspired navigation-control system, human vision inspired and birds of prey 
inspired search and track systems. Two classes of new missions for Mars exploration: 1) the 
long range exploration missions and 2) critical ephemeral phenomena observation missions 
can be enabled by incorporation of these bioinspired technology breakthroughs in such 
flyers. In this paper we describe our implementation of an image based guidance algorithms 
that can be used for imaging the descent and landing of mission payloads on Mars, thus 
potentially enabling a ”black box” capability as a unique risk mitigation tool for landed 
missions of all types. Further on, such capabilities could enable observation of a variety of 
other ephemeral phenomena such as tracking dust storms in real-time.  

I. �Introduction  
e are currently developing autonomous biologically inspired unmanned flyers that can potentially be used in a 
variety of missions to Mars. As previously described in Refs. 1-8 unmanned flyers can be used to provide 

closeup imaging of the Mars surface, explore canyons and other regions on Mars that are not accessible to rovers, 
enhance map resolution thus increasing path planning capabilities for rovers, and provide ad hoc communication 
relays between landers on the Mars surface. There is also significant interest in observing the descent and landing of 
mission payloads sent to Mars. Accordingly, an unmanned flyer could be launched during the descent of a Mars 
mission package, and used to observe the descent and landing of the main payload. Used in this capacity, the 
unmanned flyer performs a ”black box” function: following the descent of the lander, imaging the event, storing the 
critical data to provide an onlookers view of descent and landing of the payload.4,8 

With current state-of-the-art technologies, flyers on Mars are not feasible. Challenges that must be addressed 
include airframe design, Mars suitable sensor design, low Reynolds number flight control, and autonomous navigation 
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without GPS and magnetometers. Since GPS will not be available and magnetometers designed for the earth’s mag-

netic field will not likely be effective on Mars, additional sensors must be used. In Refs. 2,5,7,4,6,8 development of

sensors to address these needs has been described. In this paper we focus on the use of image directed control of an

autonomous unmanned flier to image a Mars payload during its descent and landing. In Section6, we develop a novel

guidance and control algorithm that uses image data in the feedback loop to maintain a specific orbit radius around the

payload. The image data is used to identify and track critical features of the descending payload and will be used to

control the UAV to maintain the image in the center of the camera field-of-view. A computer vision algorithm based on

color segmentation will be used to track the payload. To explore the feasibility of this mission, an earth-based experi-

ment that uses two unmanned mini-UAVs is described in Section2. One of the UAVs, termed the imager, is equipped

with a camera mounted on a pan-tilt gimbal. The other UAV, termed the payload, is equipped with a parachute that

can be deployed from a safe altitude. The imager will use camera data to image the payload as it descends. The results

of this development are being presented here as the latest proof-of-concept of the capabilities of such flyers utilizing

bioinspired algorithms and technologies which hold the potential for enabling close-up observation of descent and

landing as a possible risk mitigation tool for all future landed missions. A study to assess the relative meritcomplexity

of deploying such an observation flyer is underway and will be presented elsewhere.

2 Potential Mars Scenario

We will model the flight tests described in this paper after a potential Mars landing scenario based on the Mars

Pathfinder Mission.9 A possible time line for an actual Mars mission is listed below, where EOL is the estimated-time-

of-landing.

1) EOL = 204 seconds. The spacecraft enters the Mars atmosphere at a speed of 7600 m/s and an altitude of

125 km.

2) EOL = 140 seconds. The parachute is deployed. The spacecraft velocity is approximately 400 m/s, with an

altitude of 7 km.

3) EOL = 120 seconds. The heat shield separates from the payload and the imager is separated from the main

payload. Descent velocity of the payload is 100 m/s and initial velocity of the imager is 120 m/s. Altitude is

5 km.

4) EOL= 80 seconds. The payload separates and the bridle is deployed. Descent velocity of the payload is 65 m/s.

Velocity of the flyer is 100 m/s. Altitude of the payload is 3 km. Altitude of the imager is approximately 3.5 km.

5) EOL= 10 seconds. The airbags inflate. Descent velocity of the payload is 60 m/s. Velocity of the imager is

100 m/s. Altitude of the payload is 300 m. Altitude of the imager is 800 m.

6) EOL= 0 seconds. The payload impacts the Mars surface. Velocity of the imager is 100 m/s. Altitude of the

imager is 500 m.

The key technical challenges that must be addressed by the autonomous guidance and control algorithms are:

(a) the initial acquisition of the payload in the camera field-of-view of the imager, (b) the use of computer vision to

identify and track features on the payload, (c) correctly servo the pan and tilt gimbal to maintain the image in the
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center of the camera field-of-view, and (d) use the image data to control the imager to maintain a circular orbit around

the descending payload.

In this paper we will focus on items (b), (c), and (d). We envision the following demonstration scenario which is

depicted graphically in Figure1.

1) Two unmanned autonomous flyers are launched from home base. The imager is equipped with a camera mounted

on a pan and tilt gimbal. The payload flyer is equipped with a deployable parachute.

2) The imager is launched first and commanded to autonomously orbit the payload flyer with a vertical separation

of 100 meters and an orbit radius of 100 meters. The payload flyer is then launched and commanded to fly to a

waypoint with a vertical height of 500 meters.

3) When the payload flyer is at its destination, the orbit of the imager is tightened to 50 meter vertical separation

and 75 meter orbit radius.

4) The payload flyer deploys its parachute and within 20 seconds reaches a constant descent velocity of 0.78 m/s.

5) The imager continues to orbit the payload, maintaining the image of the payload flyer in its camera field-of-view

with a constant vertical separation of 50 m.

6) When the payload touches ground, the imager continues to image the payload for an additional sixty seconds,

and then lands autonomously.

Ground

Camera field of view

Lander

Imaging flyer

Ground

Camera field of view

Lander

Imaging flyer

Ground

Camera field of view

Lander

Imaging flyer

Fig. 1 Demonstration scenario. The imager maintains the payload and parachute constantly in its field of view.

The earth mock-up scenario will use GPS signals to initially acquire the image. In an actual Mars scenario, GPS

signals will not be available to guide the acquisition process. One possible approach to image acquisition is as follows.

When the imager is separated from the payload, it could use a Kalman filter to predict the location of the payload until

the vision system is able to acquire it. Alternatively, if the payload becomes lost, the imager would execute a climb
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maneuver to increase the region visible to the camera, and the pan-tilt gimbal would execute a search pattern until the

payload is acquired.

A simulation of the observation scenarios is shown in this AVI movie.

3 Biological Inspiration

The vision algorithms described in this paper are inspired by the biological vision systems of birds of prey. Motion

detection is an important and fundamental visual function of biological vision systems. It requires frequent eyeball

movement in making small visual shifts in order to capture the image of an interesting target on the retinal fovea.10,11,12

Frequent eyeball movement and target motion create optical flow on the retina. Bio-inspired vision and control algo-

rithms mimicking these operations will be developed to measure the motion, and the target size and position in the

image. While these operations could be performed with stereo vision, the limited payload of the imager necessitates

single camera techniques.

Birds essentially perform two tasks while hunting: seeking and tracking. To seek prey, they employ two primary

senses: smell (olfactory) and sight (vision); however, smell does not contribute nearly as much as vision.13,14 Both

birds and insects use UV light to augment their vision in the visible light spectrum.14,15,16 Insects and birds use the UV

spectrum to identify food sources, so a frequency (color) based algorithm for seeking targets seems appropriate. Once

tracking something in-flight, insects generally use optical flow to keep themselves oriented correctly.17,18 Birds also

use optical flow to stabilize their eyes when their body is moving.19,20 Birds demonstrate specialization at different

fovea in the eye for extremely high-resolution tracking. This actually contributes to a spiraling approach toward the

prey, since there are only certain positions of the head and body that allow this high-resolution tracking.21 Coordination

between optical flow and inertial measurements (the vestibular system, or ”inner ear”) helps birds in flight19,20 and

provides stabilization for later viewing of the video captured by the imaging flyer.

The tracking algorithm described in this paper is also inspired by the tracking behavior of birds of prey. Since

birds travel at a much greater speed than their prey, they execute an orbiting motion about their prey during the

tracking phase. However, the orbiting motion is not constrained by time stamped positions along the intended flight
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path. Therefore traditional trajectory generation techniques are not appropriate. Alternatively, birds maintain a fixed

distance to their prey, modifying their flight path for high wind conditions and other environmental disturbances. In

accordance with these principles, we will develop a navigation algorithm that is based on the distance to the desired

orbit, adjusting the flight path to accommodate high wind conditions and other environmental disturbances. Simulation

results for high wind conditions demonstrate motion that is qualitatively similar to the motion of birds in heavy winds.

4 Motion Extraction Using Color Segmentation

The first task is to identify the location of the payload in the image. In this paper we will focus on identification

of the parachute in the camera image. The parachute has been colored to aid the computer vision algorithms. Color

is the perceptual result of light in the visible range of the spectrum incident upon the human retina. The human retina

has three types of color photo-receptor cone cells which respond to incident radiation with different spectral response

curves. Because there are three color photo-receptors, three numerical components are necessary and sufficient to

describe colors for color image acquisition or display. Therefore, most color spaces are three-dimensional. Each pixel

of the image requires three bytes to store its color information.

Using 3-D data sets for color grading is compute-intensive because large amounts of data must be processed to

evaluate colors. It also requires extensive memory for processing. A 3-D color space would not be efficient for

machine vision applications, especially for those requiring real-time performance. Additionally, separating colors in a

3-D space is not an easy task, either visually or numerically.

Most off-the-shelf machine vision camera systems digitize color information into 3 channels of 8-bit data, one

for each of the red, green, and blue channels. These 24-bit data can represent over 16 million colors. However,

in our application only a single color is of interest suggesting a segmentation approach. There are two issues that

complicate the color segmentation task. One is the illumination variations and the other is the imperfection of color

image acquisition. The segmentation algorithm must be invariant to illumination variations as well as slight color

variations due to digitization error.

Inspired by the human vision system’s ability to segment specific colors under different lighting conditions, we

have developed a color segmentation algorithm that is not affected by illumination variations and is capable of detecting

similar colors. Our method converts the red, green, and blue (RGB) data into hue, saturation, and intensity (HIS) color

space. We then discard the intensity component that is sensitive to illumination variations. Unlike most other color

segmentation techniques that use only hue component for segmentation, we use both hue and saturation and apply

two-dimensional thresholds to these two color components. By carefully selecting these thresholds, through the help

of a simple calibration procedure, the targeted color can be robustly segmented.

Figure2 shows a flowchart of the proposed algorithm. Input RGB is first converted to HIS color space. H and

S components are then converted to binary using two thresholds (low and high). The two binary H and S images are

then passed through an< AND> operation to provide a single binary image of the segmented color. This image is

used to compute the parachute’s size and centroid which are used to determine (1) the size of the parachute in the

image, denotedr img, and (2) the location of the parachute in the image, denoted(yimg,zimg) .

Our color segmentation algorithm was tested on six parachutes with different colors: red, blue, yellow, white,

purple, and light green. Red seemed to give the best results. A flight experiment was conducted where a UAV was

directed to pass over the parachutes and record the image data. The image data was then post processed to tune the

vision algorithm.
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Fig. 2 Computer vision color segmentation algorithm.

The link below shows a movie file of the computer vision results using a video camera mounted in a UAV. The first

segment of the movie shows the parachutes on the ground, imaged from a UAV flying at approximately 100 meter.

The second segment shows the color segmentation algorithm which has extracted the red parachute. The large smudge

in the image is due to a scratched cover on the camera gimbal. The vision algorithm was tuned so that the parachute

can be tracked in real time, finding the image in approximately 60% of the frames.

An AVI movie showing computer vision results.

5 Camera Point Algorithm

When birds-of-prey are hunting small animals, they maintain their prey in the center of their view to take advantage

of the visual acuity provided by the deep fovea in the center of their eyes.21 In a similar way, we will use a camera

mounted on a pan and tilt gimbal to maintain the parachute in the center of the image. The objective of this section

is to briefly describe an algorithm that can be used to point the camera at a world coordinate expressed in the vehicle

frame.

There are several coordinate frames that are involved in the problem.

The inertial frame CI . The inertial coordinate system is a Mars (Earth) fixed coordinate system with origin at the

defined home location. Thex-axis ofCI points North, they-axis points East, and thez axis points toward the

center of Mars (Earth).

The vehicle frameCv. The origin of the vehicle frame is at the center of mass of the UAV. However, the axes ofCv

are aligned with the axis of the inertial frameCI . In other words, thex-axis points North, they-axis points East,

and thez-axis points toward the center of Mars (Earth).

The body frameCb. The origin of the body frame is also at the center of mass of the UAV. Thex-axis points out the

nose of the UAV, they-axis points out the right wing, and thez-axis point out the belly. As the attitude of the
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UAV moves, the body frame remains fixed with respect to the airframe.

The camera frameCc. The origin of the camera frame is located at the center of the image, which we will assume to

be at the center of mass of the UAV. Thex-axis points along the view axis of the camera, they-axis is located in

the image plane and points to the right as seen by a person viewing the image. Thez-axis is also located in the

image plane and points down as seen by a person viewing the image. A graphical representation of the camera

frame is shown in Figure3.

image

Fig. 3 A representation of the coordinate frame attached to the camera.

.

The transformation between the vehicle frame and the body frame is given by

Rv→b = Rroll(φ)Rpitch(θ)Ryaw(ψ)

=




cθcψ cθsψ −sθ
sφsθcψ−cφsψ sφsθsψ +cφcψ sφcθ
cφsθcψ +sφsψ cφsθsψ−sφcψ cφcθ


 ,

wherecϕ = cos(ϕ) andsϕ = sin(ϕ). Therefore, ifp is a vector, andpb, pv ∈ R3 are its representation inCb andCv

respectively, then

pb = Rv→bpv and

pv = Rb→vpb = RT
v→bpb.

If the location of the origin of the vehicle frame in the inertial frame is given byz, then the transformation from

the inertial frame to the vehicle frame is given by

pv = pI −z.

As discussed in the previous section, the vision system identifies (1) the pixel coordinates of the parachute, denoted

(yimg,zimg), and (2) the size of the parachute in the image, denoted asr img. We will also assume that we know the actual

size of the parachute, denotedRimg. From projective geometry,22 we know that the location of the object in the camera

frame is given by

pc =




f
Rob j
r img

yimg f 2 Rob j
r img

zimg f 2 Rob j
r img


 , (1)
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where f is the focal length of the camera. Therefore, the location of the object in the body frame is given by

pb = Rc→bpc

=




cθcψ cθsψ −sθ
sφsθcψ−cφsψ sφsθsψ +cφcψ sφcθ
cφsθcψ +sφsψ cφsθsψ−sφcψ cφcθ







f
Rob j
r img

yimg f 2 Rob j
r img

zimg f 2 Rob j
r img


 .

Given the body frame coordinates of the object, the next objective is to command the gimbal servos so that the

camera points directly at the object. The orientation of the camera frame with respect to the body frame is given by

two angles: the azimuth angleαaz and the elevation angleαel. An arbitrary orientation of the camera, represented by

(αaz,αel) is defined as follows. The camera and body axes are originally aligned, and the camera is first rotated by

an angle ofαaz about the bodyz-axis as shown in Figure 4. Label the new (intermediate) coordinate frame asC1 as

shown in Figure4. The camera is then rotated an angle of−αel about they-axis ofC1 as shown in Figure5 to obtain

the camera frame. Therefore, we have

Fig. 4 The azimuth angle is defined as a rotation about the bodyz-axis.

Rb→c =




cosαel 0 sinαel

0 1 0

−sinαel 0 cosαel







cosαaz sinαel 0

−sinαel cosαel 0

0 0 1




=




cosαel cosαaz cosαel sinαaz sinαel

−sinαaz cosαaz 0

−sinαel cosαaz −sinαel sinαaz cosαel


 .

The objective is to findαaz andαel that align the image axis, i.e.,xc with the vectorpb. In other words, we would like
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Fig. 5 The elevation angle is defined as a rotation about they-axis inC1.

to find αaz andαel that satisfy the equation

pb =




pbx

pby

pbz


 = Rc→b



‖pb‖

0

0




=




cosαel cosαaz −sinαaz −sinαel cosαaz

cosαel sinαaz cosαaz −sinαel sinαaz

sinαel 0 cosαel






‖pb‖

0

0




=




cosαel cosαaz

cosαel sinαaz

sinαel


‖pb‖ .

Dividing the second element of this equation by the first and solving forαaz we get

αaz = tan−1
(

pby

pbx

)
.

From the last element of this equation we get

αel = sin−1
(

pbz

‖pb‖
)

.

6 Image Directed Vulture Algorithm

This section describes our approach to image directed guidance algorithms that establish and maintain a prescribed

orbit radius in the presence of moving obstacles, high wind conditions, and other environmental disturbances. We as-

sume that the motion of the payload to be tracked is slower than the motion of the imager. The guidance algorithm

described below uses as its input the location of the payload in the body frame of the imager, and is therefore ideally

suited to the Mars lander scenario using image directed control. We also assume that the imager autopilot main-

tains airspeed, altitude and roll attitude hold, and that a constant airspeed, sufficient to maintain lift in the Martian

atmosphere is maintained by the autopilot.
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6.1 Mathematical Model of the Unmanned Autonomous Flyer

Let r = (rx, ry)T be the inertial position of the imager and leth be the altitude. Let(φ ,θ ,ψ) be the roll, pitch, and

yaw angles of the imager respectively. Also, let(u,v,w) be the velocities along the body axes, and let(p,q, r) be the

associated rates. Then the kinematic equations of motion are given by23,24




ṙx

ṙy

ḣ


 =




cθcψ sφsθcψ−cφsψ cφsθcψ +sφsψ
cθsψ sφsθsψ +cφsψ cφsθsψ−sφcψ

sθ −sφcθ −cφcθ







u

v

w


 (2)




φ̇
θ̇
ψ̇


 =




1 sφ tθ cφ tθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ







p

q

r


 , (3)

where the shorthand notationcφ 4
= cos(φ), sφ 4

= sin(φ), tφ 4
= tan(φ) has been used for convenience.

The first simplification will be to express the velocity vector in the wind frame of the imager, which implies that



u

v

w


 =




V

0

0


 . (4)

The pitch angleθ is related to the flight path angleγ as

θ = α + γ

whereα is the angle of attack. In the wind frame, the angle of attack is zero and we have thatθ = γ. Therefore,

Eq. (2) becomes 


ṙx

ṙy

ḣ


 = V




cosφ cosγ
sinφ cosγ

sinγ


 . (5)

Equation (5) is valid if V is the ground speed of the imager. However, ifV is the airspeed, then this equation must be

augmented with the speed of the wind as follows:



ṙx

ṙy

ḣ


 = V




cosφ cosγ
sinφ cosγ

sinγ


+




wx

wy

wh


 , (6)

wherewx is the speed of the wind in the direction of the inertialx-axis (North).

At constant altitude we have thatγ = 0 andh equals a constant. Therefore ignoring the altitude dynamics gives

(
ṙx

ṙy

)
= V

(
cosφ
sinφ

)
+

(
wx

wy

)
. (7)

The following derivation draws on the discussion in [24, p. 224–226]. From Eq. (3) we get that

ψ̇ =
sinφ
cosθ

q+
cosφ
cosθ

r.
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Figure 6:Free body diagram indicating forces on the imager in they− z plane. The nose of the imager is out of the

page. The imager is assumed to be pitched at the flight path angleγ.

In the wind axis we haveθ = γ so

ψ̇ =
sinφ
cosγ

q+
cosφ
cosγ

r. (8)

Figure6 shows a free body diagram of the imager indicating forces in thex−z plane during a cork-screw maneuver.

Writing the force equations we get

Lcosφ cosγ = mgcosγ (9)

Lsinφ = mVψ̇ . (10)

Dividing Eq. (10) byEq. (9) and solving for˙ψ gives

ψ̇ =
g
V

tanφ , (11)

which is the equation for a coordinated turn.

We will assume that the imager’s autopilot is tuned such that the closed-loop behavior of these loops is essentially

first order. Therefore, the closed loop behavior of the autopilot is given by

V̇ = αV(Vc−V)

φ̇ = αφ (φ c−φ) (12)

whereα∗ are positive constants, andVc andφ c are the inputs to the autopilot.

In summary, the equations of motion for the imager are given by

ṙx = V cosψ +wx (13)

ṙy = V sinψ +wy (14)

ψ̇ =
g
V

tanφ (15)

V̇ = αV(Vc−V) (16)

φ̇ = αφ (φ c−φ). (17)

6.2 Reachable Trajectories

The equations of motion listed in Eqs. (13)–(17) impose limitations on the feasible paths of the imager. The path

tracking algorithm developed in this paper depends, at each time instant, on the reachable setT seconds into the future.

The objective of this section is to mathematically define this set.

The primary constraint on the imager is the limited feasible roll angle. Assume that the roll angle is constrained as

−φ̄ ≤ φ ≤ φ̄ .
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From Eq. (15) we have

− g
V

tanφ̄ ≤ ψ̇ ≤ g
V

tanφ̄ .

Givenψ̇, the associated turning radius is given by

Rt =
V
ψ̇

.

Therefore, the minimum turning radius is given by

R̄t =
V2

gtanφ̄
.

Assuming a constant velocity and a constant roll angle, Eq. (15) can be integrated to obtain

ψ̄(t,σ) = ψ(t)+σ
g
V

tanφ .

Plugging into Eqs (13)-(14) and integrating gives

r̄(t,σ ,φ) = r(t)+
V2

gtanφ

(
sin

(
ψ(t)+σ g

V tanφ
)−sinψ(t)

−cos
(
ψ(t)+σ g

V tanφ
)
+cosψ(t)

)
+σ

(
wx(t)

wy(t)

)
. (18)

The reachable setT seconds in the future is given by

RT =
⋃

−φ̄≤φ≤φ̄

r̄(t,T,φ).

The reachable set forT = 1,2,3 seconds are shown in Figure7 for wx = wy = 0.

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10
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20

30

40

T=1 s. 

T=2 s. 

T=3 s. 

Fig. 7 The reachable set at timesT = 1,2,3 seconds.
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6.3 Distance between the Reachable Set and the Desired Orbit

In this section we will derive an algorithm to find the closest point between the reachable setRT and the desired

orbit. Suppose that the center of the desired orbit isro and that the radius of the desired orbit isRo. The reachable set

at timeT is parameterized by the roll angleφ . An objective function that penalizes distance from the desired orbit is

given by

g(φ) =
1
2

[
‖r̄(t,T,φ)− ro‖2−R2

o

]2
. (19)

The objective is to findφ ∈ [−φ̄ , φ̄ ] that minimizesg(φ).

A simple minded approach is to quantize[−φ̄ , φ̄ ] into M elements, evaluated at each element and pick the mini-

mum value. However ifM is small, this strategy leads to quantization error inφ and results in chattering behavior.

Figure8 shows the roll angle command for tracking a reference orbit and the flight path, whereφ c was selected

by evaluatingg(φ) at 30 evenly spaced angles between[−35,30] degrees. In addition, this scheme shows sensitivity

to the value ofαφ . Figure8, shows results for bothαφ = 10, a fairly quick response time for the roll attitude hold

autopilot, andαφ = 1, a more reasonable response time. Note the sensitivity toαφ .
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Fig. 8 The commanded roll angle exhibits chattering if the optimization step is done with a brute force technique.

This figure also shows the sensitivity of the brute force method toαφ . Note the poor tracking quality.

To eliminate the chatter, we need to embed some memory into the optimization process. In addition, we would

like to avoid the chattering that results from quantization error. To do so, we propose introducing a nonlinear inne
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loop that dynamically seeks the minimum of Eq.(19). In particular, let

φ̇ ∗ =−γ
∂g
∂φ

(φ ∗), (20)

whereγ is a positive constant that determines the convergence rate to the minimum ofg. The gradient ofg is given by

∂g
∂φ

=
[
‖r̄(t,T,φ)− ro‖2−R2

o

] ∂
∂φ

(
‖r̄(t,T,φ)− ro‖2−R2

o

)

=
[
‖r̄(t,T,φ)− ro‖2−R2

o

]
(r̄(t,T,φ)− ro)

T ∂
∂φ

r̄(t,T,φ),

where

∂
∂φ

r̄(t,T,φ) =
∂

∂φ


r +

V2

gtanφ


 sin

(
ψ + gT

V tanφ
)
−sinψ

−cos
(

ψ + gT
V tanφ

)
+cosψ







=−V2

g
csc2 φ


 sin

(
ψ + gT

V tanφ
)
−sinψ

−cos
(

ψ + gT
V tanφ

)
+cosψ


+

V2

gtanφ


cos

(
ψ + gT

V tanφ
)

gT
V sec2 φ

sin
(

ψ + gT
V tanφ

)
gT
V sec2 φ




=− V2

gsin2 φ


 sin

(
ψ + gT

V tanφ
)
−sinψ

−cos
(

ψ + gT
V tanφ

)
+cosψ


+

VT
sinφ cosφ


cos

(
ψ + gT

V tanφ
)

sin
(

ψ + gT
V tanφ

)



=


−V2sin

(
ψ + gT

V tanφ
)

cosφ +V2sinψ cosφ +gVTsinφ cos
(

ψ + gT
V tanφ

)

V2cos
(

ψ + gT
V tanφ

)
cosφ −V2cosψ cosφ +gVTsinφ sin

(
ψ + gT

V tanφ
)




gsin2 φ cosφ
.

The last equation indicates that there will be numerical problems asφ → 0. By l’Hospitals rule, we get after some

lengthy algebra that

lim
φ→0

∂ r̄
∂φ

=
gT2

2

(
−sinφ
cosφ

)
.

Note also, that using l’Hospitals rule yields

lim
φ→0

r̄(t,T,φ) = r(t)+VT

(
cosφ
sinφ

)
.

Figure9 shows the roll angle command for tracking a reference orbit and the flight path, whereφc was selected

using Eq.(20). Note the relative insensitivity to   α and the quality of the tracking error as opposed to the results

shown in Figure8.

6.4 Roll Input Command.

The previous section produces a desired roll angleφ∗. The objective of this section is to translate that into the roll

input commandφc. Recall thatφ satisfies

φ̇ = αφ (φ c−φ),

whereαφ is the time constant of the autopilot. Definingφ̃ 4
= φ −φ ∗ we get

˙̃φ = φ̇ − φ̇ ∗

= αφ (φ c−φ)− φ̇ ∗.
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Fig. 9 The roll command and flight path using Eq.(20).

Assuming that the autopilot has already been tuned to extract the best possible time constant for the roll command, we

cannot hope to do any better. Therefore we would like

˙̃φ =−αφ φ̃ ,

which results in

φ c = φ ∗+
φ̇ ∗

αφ
.

An Euler approximation oḟφ ∗ is used to give

φ̇ ∗[n] =
φ ∗[n]−φ ∗[n−1]

Ts
,

whereTs is the sample rate between roll commands.

6.5 Altitude Command

Given the size of the parachute in the imagerob j, the known size of the objectRob j and the focal length of the

cameraf , we get that the distance to the object is given by

hob j = f
Rob j

rob j
. (21)
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The objective of the altitude controller is to driveh̃ = h−hob j to zero. Differentiating̃h twice with respect to time

gives

¨̃h = ḧ− ḧob j

=−αḣḣ−αh(h−hc)− ḧob j.

Since the autopilot has already been tuned for maximum performance on the airframe, the best that we can hope for,

is that the altitude error satisfies
¨̃h+αḣ

˙̃h+αhh̃ = 0.

Accordingly, we obtain

hc =
1

αh

[
ḧob j +αḣḣob j +αhhob j

]
. (22)

Note that Eq.(22) does not require knowledge of the actual altitude of the imager, but is instead dependent on

the relative distance between the imager and the payload.

7 Summary of Vulture Algorithm.

We have termed the algorithm that results by combining the previous sections, the “vulture” algorithm, since it is

very similar to the behavior displayed by birds of prey as they hunt.21

The inputs to the algorithm are: (1) the radius of the desired orbitRo, (2) the time constant of the roll attitude

hold loopαφ , (3) the number of gradient descent iterationsN, (4) the gradient descent parameterγ, (5) the look ahead

windowT, (6) the roll saturation̄φ , The outputs of the algorithm are: (1) the gimbal servo commandsαaz andαel, (2)

the roll altitude commandφ c. A concise summary of the method is given in Algorithm1. For the simulations shown

in Figures8 and9 we usedRo = 30, αφ = 1(or 10), N = 5, γ = 0.0001, T = 2, andφ̄ = 35(degrees).
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Algorithm 1 Vulture Algorithm (Constant velocity and altitude)
1: Obtainyimg, zimg, r img from the computer vision system.

2: Compute:pb ←




cθcψ cθsψ −sθ
sφsθcψ−cφsψ sφsθsψ +cφcψ sφcθ
cφsθcψ +sφsψ cφsθsψ−sφcψ cφcθ







f
Robj
r img

yimg f 2 Robj
r img

zimg f 2 Robj
r img


.

3: Command camera gimbal servos as:

4: αaz← tan−1
(

pby
pbx

)

5: αel ← sin−1
(

pbz
‖pb‖

)

6: Start gradient descent at the last roll angle:φ ∗[n]← φ ∗[n−1]

7: for i = 1 to N do {ImplementN steps of gradient descent.}
8: Compute:ξ ← ψ + Tg

V tanφ ∗[n]

9: if |φ ∗[n]|< 0.01 then {Separate computation for small roll angle.}

10: (r̄ − r(t))←VT

(
cosψ
sinψ

)

11: ∂ r̄
∂φ ← gT2

2

(
−sinψ
cosψ

)

12: else

13: (r̄ − r(t))← V2

gtanφ∗[n]

(
sinξ −sinψ
−cosξ +cosψ

)

14: ∂ r̄
∂φ ← −V2

gsin2 φ∗[n]

(
sinξ −sinψ
−cosξ +cosψ

)
+ VT

sinφ∗[n]cosφ∗[n]

(
cosξ
sinξ

)

15: end if

16: Compute:(r̄ − ro)← pb +(r̄ − r(t))

17: Compute gradient:∂g
∂φ ← 2

[
‖r̄ − ro‖2−R2

o

]
(r̄ − ro)

T ∂ r̄
∂φ

18: Move φ ∗[n] along negative gradient:φ∗[n]← sat̄φ
(

φ ∗[n]− γ Ts
N

∂g
∂φ

)
.

19: end for

20: Estimate:φ̇ ∗← φ∗[n]−φ∗[n−1]
Ts

21: Command Roll attitude hold as:φc ← sat̄φ
(

φ̇∗
αφ

+φ ∗
)
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8 Simulation Results

The objective of this section is to demonstrate the effectiveness of the algorithm in strong wind conditions. The

airspeed of the imager is simulated atV = 10 (m/s). In the simulations, we will use a constant wind blowing from

West to East. The strength of the wind will be represented byW which is given in meters/second. Figures10 and11

show the flight path of the imager and the distance from its desired orbit when (a)W = 2, (b) W = 5, (c) W = 7, (d)

W = 9. Note that Figure11 indicates that reasonable performance is obtained even in the presence of wind speeds that

are 90% of the airspeed of the imager.
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Figure 10:The vulture algorithm in wind blowing from West to East. The strength of the wind is (a)W = 2(m/s), and

(b) W = 5(m/s). The airspeed of the imager isV = 10(m/s). The bottom plots show the distance of the imager from

the desired orbit.

Movie files that demonstrate the motion of the imager in simulated wind conditions can be viewed in the following

avi files. Note the similarity of the motion to the flight paths of large birds in high wind conditions.

An AVI movie showing 6DOF simulation of the imager in wind that is 20% of the airspeed of the imager.

An AVI movie showing 6DOF simulation of the imager in wind that is 50% of the airspeed of the imager.

An AVI movie showing 6DOF simulation of the imager in wind that is 70% of the airspeed of the imager.

An AVI movie showing 6DOF simulation of the imager in wind that is 90% of the airspeed of the imager.
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Fig. 11 The vulture algorithm in wind blowing from West to East. The strength of the wind is (c)W = 7(m/s), and

(b) W = 9(m/s). The airspeed of the imager isV = 10(m/s). The bottom plots show the distance of the imager from

the orbit.
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9 Experimental Setup and Results

9.1 Mini-UAV Airframe

Figure12 shows the airframe used to demonstrate the image directed control concept. The airframes are modified

versions of the standard Zagi THL flying wing,25 and are therefore inexpensive and versatile. While this airframe

would not be appropriate for an actual Mars mission, it provides a low-cost, low-risk research platform that can be

used to demonstrate image directed control technologies that will be critical for a Mars mission. The Zagi platform

has a wingspan of 48 inches, a wing area of 2.83 square feet, an unloaded weight of 11.5 ounces, and a wing loading

factor of 4 ounces per square foot.

Fig. 12 Mini-UAVs used for the Mars lander project.

The airframe has been modified in several ways. (1) Both the imager and the payload flyers were retrofitted with

autopilots and 900 MHz wireless modems. (2) The payload flyer was outfitted with a parachute and release mechanism

(described below). (3) The imaging flyer was outfitted with a video camera mounted on a pan-tilt gimbal and a video

transmitter (described below). The airframe is actuated with Hitec HS-55 servos which are inexpensive, light weight,

robust and responsive. It is powered by a Hacker b12-15l electric brushless motor, with 4:1 gear reduction. Batteries

were selected to achieve a 30 minute flight test. The maximum level flight velocity is approximately 45 mph, with a

cruise velocity of approximately 30 mph.

9.2 BYU Kestrel Autopilot

Figure 14 shows a picture of the BYU Kestrel autopilot which was used to obtain the experimental results. The

autopilot contains a 30 MHz Rabbit micro-controller, 3-axis rate gyros, 3-axis accelerometers, a differential pressure

sensor to measure airspeed, an absolute pressure sensor to measure altitude, an interface to a GPS antenna, and a suite

of digital and analog I/O channels. The autopilot implements altitude hold, velocity hold, and roll attitude hold26,27 as

needed to implement Algorithm 1. The autopilot interfaces to ground station software that is capable of commanding
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multiple UAVs simultaneously. The ground station software is used to command both the imager as well as the payload

flyer.

Fig. 13 The Kestrel autopilot developed by BYU.

The BYU Kestrel Autopilot weighs 16.5 grams and contains 3-axis rate gyros, 3-axis accelerometers, absolute and

differential pressure sensors, and interfaces to a GPS receiver.

9.3 Pan-Tilt Gimbal

Figure 15 shows the pan-tilt gimbal and the camera system used for the demonstration. The camera is positioned by

the use of two servos: one to control pan and one to control tilt. The tilt (elevation) servo directs the camera at angles

between the forward horizon and rear horizon. Gearing on the pan (azimuth) servo allows the camera to pivot a full

360 degrees. These capabilities enable the surrounding scene to be captured through two independent configurations.

For example, the rear horizon can be captured by tilting to the rear, or alternately by panning 180 degrees to capture

images to the rear. The device is designed so that the entire assembly is self-contained. This configuration allows

only minimal impact on the design of the actual aircraft structure. The only allowance needed within the aircraft itself

is that wiring be available directly beneath the mounting location. Furthermore, the components of the fixture are

lightweight and durable (high density plastic and aluminum).

9.4 Parachute and Payload Flyer

As shown in Figure15, the payload flyer has been equipped with a parachute deployment pod mounted to the top

wing surface of the airframe. When commanded by the ground station, the spring loaded deployment pod is activated,

releasing the parachute canopy, which pulls the parachute into the air stream. The deployed parachute is shown in

Figure16. The 36 inch parachute slows the payload to a descent of approximately 0.78 m/s. From an altitude of
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Fig. 14 The pan-tilt gimbal used for the project. The gimbal is actuated by two RC-servos that provide 360 degrees

of pan and 180 degrees of tilt.

500 meters it will take the payload about 6.5 minutes to reach the ground. Figure17 shows the payload in descent

mode.

Fig. 15 The payload flyer is an autonomous UAV with a parachute pod mounted on the top of the airfoil.
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Fig. 16 This figure demonstrates the deployment of the parachute. The pod that holds the parachute remains

attached to the UAV.

Fig. 17 The payload flyer is shown in descent mode after the parachute has been deployed. When the parachute is

deployed, the motor is disengaged.
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9.5 Framegrabber and Computer Vision

Figure18shows our software architecture for image directed control. At this stage, the computer vision algorithms

are implemented at the ground station. For an actual Mars mission, this functionality will need to be moved on-board

the flyer. As shown in Figure18, an NTSC analog video signal is transmitted to the ground station via a 2.4 GHz

wireless transmitter. A PCMCIA video capture card plugged into a laptop captures the images at 30 frames per

second. We are using an ImperX VCE-P 0 video capture card. The images are processed in real time and the pixel

location and size of the parachute are passed to the guidance algorithm which sendαaz, αel, hc, Vc, andφ c to the

autopilot via a 900 MHz transceiver. The sample rate of the guidance loop is approximately 20 Hz with a delay of

approximately 0.5 seconds. We should point out that the sample rate of the autopilot is approximately 120 Hz with

insignificant delay.

Fig. 18 Software architecture for image directed control. An analog NTSC video signal is transmitted to the ground

via a 2.4 GHz transmitter. The analog signal is captured by the video capture card located at the ground station. Image

data is processed and autopilot commands are transmitted to the imager.

9.6 Flight Tests and Results

A simplified version of the vulture algorithm was used in our flight tests. The simplified vulture algorithm is based

on the limit cycle behavior of a supercritical Hopf bifurcation. The equations for a Hopf bifurcation are given by

ṙx = ry + rx
(
µ− r2

x− r2
y

)

ṙy =−rx + ry
(
µ− r2

x− r2
y

)
.

A Hopf bifurcation is considered sub-critical whenµ < 0, with a single equilibrium at the origin. Whenµ = 0, it

forms a slow decay to a spiral point at the origin, and whenµ > 0, the equation is considered supercritical, and the
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trajectory is a limit cycle centered about the origin. The desired heading of the imager is generated as follows:

ṙx = r̃y +
r̃x

αr2

(
r2− r̃2

x− r̃2
y

)

ṙy =−r̃x +
r̃y

αr2

(
r2− r̃2

x− r̃2
y

)

ψc = tan−1
(

ṙy

ṙx

)
,

wherer̃ = (r̃x, r̃y)T is the estimated position vector from the desired orbit location, andr is the desired orbit radius.

Figure19 shows telemetry data from a flight test where the wind was 63% of the airspeed of the flyer, demonstrating

the robustness of the algorithm to wind.

Wind = 63% of airspeed

Orbit radius command
change from 100m to
50 m.

Vulture algorithm is
activated

Desired orbit
Dots have roughly 
equal time separations

Fig. 19 Telemetry data from a flight test where wind speed is 63% of the flyers airspeed. The flyer is initially

commanded to maintain a 100 m orbit. At the indicated location, it is commanded to maintain a 50 m orbit.

A mock demonstration described in Section2 was flight tested using GPS signals on both the payload and imager.

The following WMV and AVI movies demonstrate the effectiveness of our approach. The flyers in these movies

operate autonomously without human interaction.

This WMV movie shows the parachute being launched from the payload flyer.

This WMV movie shows the video from the gimbaled camera on the imager as it tracks the parachute launch of

the payload. The separation between imager and payload in this movie is approximately 100 meters.
This AVI movie show a MatlabTM visualization of the telemetry data. The imager is initially launched and com-

manded to orbit the payload flyer while it is still on the ground. The payload flyer is subsequently launched and

commanded to fly to a waypoint with an altitude of 500 meters. When the parachute is launched, the payload flyer

free falls to the ground and the imager orbits the payload keeping it in the camera field of view.

10 Conclusion

In this paper we have defined a Mars lander scenario where a flyer is used to track and image the descent of

the main payload to Mars. Color segmentation algorithms have been developed to track the payload in the camera
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image. A novel trajectory generation algorithm has been developed to track the payload flyer based on biological 
considerations. The salient feature of this algorithm is its robustness to strong wind conditions. An earth based mock 
scenario was developed and flight tested using miniature UAVs. The flight demonstrations show the effectiveness of 
the approach.  
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